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Despite the widespread perception that evolutionary inference from molecular sequences is a statistical
problem, there has been very little attention paid to questions of experimental design. Previous
consideration of this topic has led to little more than an empirical folklore regarding the choice of suitable
genes for analysis, and to dispute over the best choice of taxa for inclusion in data sets. I introduce what I
believe are new methods that permit the quanti¢cation of phylogenetic information in a sequence
alignment. The methods use likelihood calculations based on Markov-process models of nucleotide
substitution allied with phylogenetic trees, and allow a general approach to optimal experimental design.
Two examples are given, illustrating realistic problems in experimental design in molecular phylogenetics
and suggesting more general conclusions about the choice of genomic regions, sequence lengths and taxa
for evolutionary studies.
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1. INTRODUCTION

Phylogenetic inference from molecular sequences is increas-
ingly being perceived as a statistical problem. Probabil-
istic models of nucleotide substitution or amino-acid
replacement can be allied with maximum-likelihood
(ML) inference to take advantage of established statistical
theory (Goldman 1990), to enable model-¢tting (Yang et
al. 1994; Goldman et al. 1998), to provide great £exibility
in testing evolutionary hypotheses (Huelsenbeck &
Rannala 1997), and simply to give excellent results in
the inference of evolutionary relationships (Kuhner &
Felsenstein 1994; Huelsenbeck 1995). Constraints imposed
by computational complexity are becoming less restrictive
as computers improve. Given the recognition of phylo-
genetic inference as being inherently statistical in nature,
it is surprising that so little attention has been paid to
experimental design.

A number of topics of relevance to experimental design
in phylogenetics have been discussed previously. There is
something of a folklore surrounding the choice of genes or
other genomic regions for investigating particular evolu-
tionary questions, but almost no published quantitative
results. It is widely accepted that sequences that have
undergone very little evolutionary change since their
divergence from a common ancestor, through low
substitution rates or short evolutionary times, will exhibit
too few di¡erences to contain useful evolutionary
information. Equally, sequences that have undergone very
large amounts of change (high rates or long times)
become `saturated' with changes and no evolutionary
signal is detectable amid the noise. Consequently, a happy
medium is expected at some intermediate level of
sequence divergence, but the àsymptotic' results (for
extreme high and low levels of divergence) give no clue as

to where this lies. Although there is considerable
experience with particular genes and organisms (see
Hillis et al. (1996, pp. 336^339) for an extensive list of
studies), where comparisons among genes have been
made they tend to be evaluated empirically by the
congruence of the results obtained among themselves and
with researchers'a priori expectations. In addition, a large
laboratory e¡ort is needed before even these qualitative
conclusions can be reached.

The methods introduced in this paper can quantify the
e¡ects of varying levels of divergence. They con¢rm the
belief that intermediate levels of sequence divergence are
most useful, and are able to give estimates of optimal
levels of divergence. The necessary analyses can be done
before any data are collected. The only other method for
assessing which genomic regions are likely to be most
useful in phylogenetic questions is that of Yang (1998).
This uses simulation to estimate probabilities of successful
tree-topology inference. The approach may be extremely
time-consuming for realistic problems.
The choice of taxa to include in phylogenetic studies

has also rarely been discussed. Li et al. (1987) considered
the e¡ects of adding outgroup taxa, and Ritland & Clegg
(1990) and Maddison et al. (1992) are agreed that if
outgroups are to be added, they should not be too
distantly related to the ingroup taxa (a conclusion that is
con¢rmed in this paper). More recently, consideration of
the estimation of large phylogenies has led to the
contradictory advice that the number of sequences
included in a study be reduced (Kim 1996) and increased
(particularly to break long branches in trees (Hillis
1996)) in order to improve inferences (see also Hillis
1998). Although it is not clear that the latter strategy will
always be successful (Zharkikh & Li 1993; Kim 1996),
Strimmer & von Haeseler (1996) and Hillis (1996) have
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demonstrated that the estimation of large phylogenies to
high accuracy is quite possible. Both Graybeal (1998) and
Yang (1998) have used simulations to estimate prob-
abilities of successful tree inference under conditions of
varying numbers of taxa. In this paper I show how to
quantify the information content of a data set. It will
become apparent that augmenting a data set can only
increase the information content with respect to any
particular parameter of interest (viewed in isolation),
although adding new sequences simultaneously increases
the total number of parameters (e.g. branch lengths) to
be estimated.

The length of (aligned) sequences to be analysed is also
of relevance in experimental design. Churchill et al.
(1992) developed a method for assessing the number of
sites required to test reliably whether the relationships
among four taxa were best described by a star phylogeny
or a fully resolved tree, but it is not clear that this method
can be extended to other evolutionary questions. An
empirical and heuristic approach developed by Martin et
al. (1995) seeks to estimate the number of sites needed to
estimate phylogenetic relationships correctly, but the
approach requires a fully analysed data set before any
conclusions can be drawn and it does not permit extra-
polation of results from the analysis of one combination of
model phylogeny and genomic region to any other such
combination. In contrast, the methods I introduce
incorporate sequence length in a straightforward manner,
allowing immediate quanti¢cation of its e¡ects on
information content.

There have been numerous studies whose primary aim
has been to compare the performance of di¡erent phylo-
genetic inference methods (e.g. Kuhner & Felsenstein
1994; Huelsenbeck 1995). Typically, success is measured by
the proportion of the time a method can recover the
correct evolutionary relationships from simulated data.
Components of some such studies' results can be inter-
preted in relation to questions in experimental design.The
development of these methods into a comprehensive
experimental design strategy as initiated by Graybeal
(1998) and Yang (1998) might be di¤cult, however, not
least because of the long computation times that result
from repeated simulation and analysis of realistic data sets.

A number of methods, together classed as permutation
tests, have been developed to assess whether or not data
sets contain hierarchical structure (e.g. Swo¡ord et al.
1996a). These methods have remained controversial (e.g.
Swo¡ord et al. 1996b). In any case, my interest in this
paper is not to test for the existence of any hierarchical
structure but to measure what information there is
expected to be in a data set, with a view to designing
more e¤cient experiments.

In this paper, I develop a general approach to
experimental design in molecular phylogenetics. It uses
standard optimal experimental design methods, and
allows simultaneous consideration of taxon, genomic
region and sequence-length selection. Measures are
derived from the Fisher information matrix (Edwards
1972; Atkinson & Donev 1992), which quantify infor-
mation with respect to parameters (branch lengths or
positions of internal nodes of trees) and which are
themselves of interest or may represent regions of a
phylogeny that are of particular interest.

Although tree topology can be the parameter of most
interest to systematists, it is not clear how it can be
treated as a standard parameter in phylogenetic inference
(Yang et al. 1995). The simulation approach developed by
Graybeal (1998) and Yang (1998) can assess the
probability of estimating an entire topology correctly, or
the proportion of a topology that will on average be
correctly inferred. In this paper I have taken a di¡erent
approach, concentrating on other parameters of interest
(branch lengths) and treating topology as a ¢xed part of
the model much as, say, the choice between linear, poly-
nomial or nonlinear models is ¢xed in more traditional
experimental designs. As with that analogy, other forms
of analysis (not considered in this paper) are needed to
select the best among candidate models.

Within the unifying methodology developed here, it is
possible to ¢nd optimal phylogenetic experimental
designs within the constraints imposed by real
experimental considerations. In the following sections,
the necessary theory is developed for the case of four-
state Markov models of DNA nucleotide substitution ¢rst
without, and later with, the assumption of a molecular
clock. Two example applications are described, followed
by a discussion of the results and generalizations that can
be derived from them. It may be worth stating explicitly
that although all examples given here assume the Jukes &
Cantor (1969) model of nucleotide substitution, this is by
no means necessary and is not assumed in the notation
used. The methods are also equally applicable to phylo-
genetic inference from amino-acid sequences, although
this has not yet been implemented.

2. METHODS

The information matrix I of an experiment to estimate the
vector parameter � by ML can be de¢ned by

Iij � ÿ
�
@2 ln(L)
@�i@�j

�
� ÿ

�
@2 S
@�i@�j

�
(1)

(Edwards 1972; Stuart & Ord 1991), where L is the likelihood
function and S is the support, equal to ln(L). In the simplest
case, � is one-dimensional and the information is a scalar
quantity,

I(�) � ÿ
�
@2 S
@�2

�
. (2)

Informally, I(�) is proportional to the precision of an (unbiased)
estimator of �. The second derivative of the log-likelihood
function (equation (1)) is a measure of the sharpness of the peak
in the likelihood function. A sharp peak (large information)
makes the location of the maximum easy and indicates con¢dent
estimation, whereas a relatively shallow peak (low information)
indicates less certainty.

For the purposes of experimental design, it is appropriate to
concentrate on the Fisher or expected information E�* (I), which
depends on �*, the true value of � (Edwards 1972; Atkinson &
Donev 1992). The expected information matrix is de¢ned by

E�* (Iij) � ÿE�*

�
@2 S
@�i@�j

�
. (3)

To simplify this notation, �* is omitted when there is no ambi-
guity. The inverse of the expected information matrix gives
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asymptotic lower bounds for the variances of estimators of the �i
(Stuart & Ord 1991), and E(I) is widely used in experimental
design problems. A design criterion is de¢ned in terms of the
elements of E(I), and di¡erent experimental designs for the
same estimation problem can be assessed in terms of this
measure. Di¡erent optimality criteria have been proposed,
concentrating on di¡erent aspects of estimation problems. I shall
consider two such criteria. The ¢rst considers the information
relating to just one parameter in particular, irrespective of other
parameters. This information is measured by the diagonal
element of the expected information matrix corresponding to
the chosen parameter, i.e. E(Iii) if the chosen parameter is �i (cf.
equation (2)).

The second criterion illustrated here is the determinant of
E(I), written jE(I)j, which is a measure of information
pertaining to all parameters simultaneously. Relatively large
values of this determinant indicate relatively large total amounts
of information. Use of this measure for experimental design is
known as the D-optimum criterion (Atkinson & Donev 1992).
Its reciprocal, jE(I)jÿ1, is equivalent to g̀eneralized variance'
(Stuart & Ord 1991; Atkinson & Donev 1992).

In contrast, the observed information, Iij � ÿ(@2S=@�i@�j)�̂ ,
depends on the observed data and on �̂, the ML estimate of �.
The observed information measures the precision actually
attained in an experiment, and its consideration is closely
related to the use of the curvature method for estimating
asymptotic con¢dence intervals for parameter estimates (Stuart
& Ord 1991; Yang et al. 1995). It is not used for experimental
design purposes.

In the context of phylogenetic inference, it is most convenient
to develop theory in terms of the expected information per
sequence site. As with all experimental design questions, the
true parameter values are not known and, in order to proceed, a
plausible experimental design phylogeny H must be assumed.
We must consider all data `patterns' that could appear at sites of
an alignment of DNA sequences. Each pattern is one of the 4n

possible combinations of nucleotides A, C, G and T observable
at a site for each of n sequences. I use b � 1, 2, : : :, 4n to label
these patterns, and pb to denote their probabilities of occurrence
given the experimental design phylogeny H. Initially, I develop
the theory for the case of ML phylogenetic inference with no
assumption of a molecular clock. In the absence of a molecular
clock, the branch lengths of permitted phylogenetic trees can be
varied independently.

For simplicity, all calculations reported in this paper use the
Jukes^Cantor model of DNA substitution (Jukes & Cantor 1969),
which has no free parameters. Consequently, the set of branch
lengths of H form the parameters �i. The derivations below,
however, do not require the Jukes^Cantor model and apply to
any time-reversible Markov-process model of DNA substitution,
represented by Q , its matrix of instantaneous rates (Swo¡ord
et al. 1996a). (If Q contained any of the parameters �i, e.g. a
transition/transversion rate ratio parameter, then equations (11)
and (13) below would be altered owing to the more complicated
nature of derivatives with respect to these parameters.) There
seems no reason to expect that results using other Markov-
process models for DNA substitution will give qualitatively
di¡erent results. The case of inference with the assumption of a
molecular clock is developed below. It is not clear how the deriva-
tives in the above equations can be extended to the (discrete)
tree-topology parameter, and this has not been studied.

Writing Sb � ln (pb), we obtain the following for the elements
of I(b), the information matrix for pattern b:

I(b)ij � ÿ
@2Sb
@�i@�j

� ÿ 1
pb

@2pb
@�i@�j

� 1
p2b

@pb
@�i

@pb
@�j

. (4)

From equations (3) and (4), the expected information per site is
given by

E(Iij) � ÿE
@2S
@�i@�j

� �
�
X4n
b�1

pbI(b)ij

� ÿ
X4n
b�1

@2pb
@�i@�j

�
X4n
b�1

1
pb

@pb
@�i

@pb
@�j

. (5)

The pb are constrained by
P

pb � 1 and thus
P
@2pb=

@�i@�j � 0. Therefore,

E(Iij) �
X4n
b�1

1
pb

@pb
@�i

@pb
@�j

(6)

(Edwards 1972). The expected total information for sequences of
N sites is N times this:

Etot(Iij) � NE(Iij) � N
X4n
b�1

1
pb

@pb
@�i

@pb
@�j

. (7)

The pb and their derivatives can be calculated as follows. For
a given (model) tree topology and branch lengths, de¢ne the set
of all nodes to be A � f1, 2, : : :, m, m� 1, : : :, m� ng, with
nodes 1, 2, : : :, m being the internal nodes of the tree and
m� 1, m� 2, : : :, m� n being the tips. (For a fully bifurcating
unrooted tree, m � nÿ 2.) The ordering of nodes and tips
within their respective subsets is arbitrary. Without loss of
generality, we can de¢ne internal node 1 2 A to be the `root' of
the tree. This does not a¡ect the probability calculations for any
reversible Markov-process model of nucleotide substitution
(Felsenstein 1981), and de¢nes a direction (away from the root)
on each branch of the tree. The branches can now be uniquely
labelled x 2 B � f2, 3, : : :, m� ng according to the node or tip
they lead to, and their lengths are then denoted �x. The topology
and root de¢ne a relationship on A whereby we write xny
(x, y 2 A) if there is a branch directly joining x and y with the
direction from x to y being away from the root, and write xuy
otherwise. Writing bx 2 fA, C, G, Tg for the nucleotide
(observed or unobserved) at x 2 A, we de¢ne

qbxby (�y) �
(e�yQ )bxby : xny

1 : xuy.

�
(8)

For pairs x, y 2 A such that xny, this equals the probability that
a branch of length �y with nucleotide bx at one end has nucleo-
tide by at the other end (Bartlett 1978; Swo¡ord et al. 1996a).

Given these de¢nitions,

pb �
Ym
k�1

X
bk

 !
�b1

Y
x;y2A

qbxby(�y)

 !
, (9)

where we have used the notation

Ym
k�1

X
bk

 !
�

X
b1

X
b2

. . .
X
bm

 !
, (10)

with all summations being over all nucleotides,
bk 2 fA, C, G, Tg.

For each branch j 2 B, there is a unique node i such that inj
and then
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@pb
@�j
�

Ym
k�1

X
bk

 !
�b1

Y
x, y2A
�x, y�6��i, j�

qbxby(�y)

0BB@
1CCA @qbibj (�j)

@�j

0BB@
1CCA, (11)

because �j appears in exactly once in equation (9), in the term
qbibj (�j) � (e�jQ )bibj . Standard properties of Markov chains
(Bartlett 1978) give

@qbibj (�j)

@�j
� Qe�jQ
ÿ �

bibj
, (12)

and thus

@pb
@�j
�

Ym
k�1

X
bk

 !
�b1

Y
x, y2A

(x, y) 6�(i;j)

qbxby(�y)

0B@
1CA(Q e�jQ )bibj

0B@
1CA. (13)

Felsenstein's (1981) `pruning algorithm' is an e¤cient way of
performing the calculation of the pb given by equation (9). The
similarity of equations (9) and (13) indicate ways in which the
derivatives can be calculated much as the probabilities are, and
many partial calculations from the probabilities can be re-used
to give the derivatives at little extra computational cost.

In the case of analysis with the assumption of a molecular
clock, the tree has a natural root node and there are the
restrictions that the distances from this root to each of the tips
must be equal (Felsenstein 1981). These constraints mean that
branch lengths cannot be varied independently of one another,
and are no longer appropriate parameters in information
calculations. It is useful instead to consider the positions of
internal nodes of a tree relative to its tips as the parameters of
interest. This alternative parameterization is convenient, as
independent movement of internal nodes (including the root)
nearer to or further from their ancestors is permitted.

Fortunately, little additional computation is needed to
perform this change in parameters. If the calculation of E(I(�))
is ¢rst completed as above without the constraints associated
with a clock-like tree, re-parameterization can proceed as
follows. Consider, for example, the position illustrated in ¢gure
1. The original (unconstrained) parameters (�1, �2, �3) cannot
vary independently of one another when the tree is interpreted
as clock-like (�1 and �2 must be equal if the root is in the branch
with length �3). Two new parameters ( 1,  2), representing the
positions of the two internal nodes of the clock-like tree relative
to the tips of the tree, can be de¢ned in terms of their directions
in (�1, �2, �3)-space. A unit increase in  1 (moving node 1 away
from the tips) corresponds to unit increases in �1 and �2, and a
simultaneous unit decrease in �3. In vector notation,  1 is
represented by the vector T1 � (1, 1, ÿ 1) in (�1, �2, �3)-space.
Similarly,  2 is represented by T2 � (0, 0, 2) (moving node 2
away from the tips induces no change in �1 or �2, but requires �3
to be increased on both sides of the root node 2).

In general, we can write Ti to indicate the direction in
�-space of each new parameter  i and T for the matrix with ith
row Ti. Standard vector calculus results on directional deriva-
tives (Spiegel 1959) then give

@2Sb
@ i@ j

�
X
k,l

Tik
@2Sb
@�k@�l

T 0lj , (14)

where the prime symbol (0) indicates matrix transposition.
Hence, from equation (3),

E(I( )) � TE(I(�))T 0. (15)

Branch lengths �i are the products of a rate � and times ti. The
ti and � are confounded and cannot normally be estimated (or
known) separately (Felsenstein 1981; Swo¡ord et al. 1996a). This
can be of importance when using equations (6) and (7). If the
experimental design question being considered does not involve
any variation in evolutionary rate, � is e¡ectively an (unknown)
constant. In this case we may use equations (6) and (7) as above,
as information regarding parameters �i is equivalent
to information regarding ti. It is possible, however, that
experimental designs under consideration involve varying values
of � while assessing information regarding the ti (for example,
in relation to calibrating phylogenies to estimate divergence
dates). In this case, derivatives with respect to �i in equations
(4^7) should be replaced by derivatives with respect to ti.
Because ti � �i=�, we immediately obtain

E(Iij) � �2
X4n
b�1

1
pb

@pb
@�i

@pb
@�j

(16)

and

Etot(Iij) � �2NE(Iij) � �2N
X4n
b�1

1
pb

@pb
@�i

@pb
@�j

. (17)

In other words, if the experimental designs under consideration
involve variation in the relative rate of evolution �, then the
original information matrix elements should be multiplied by �2

to give values comparable across di¡erent values of �. In the
case of a molecular clock, equation (15) remains valid after the
elements of E(I(�)) are altered appropriately.

3. EXAMPLES

(a) Best experimental design in adding sequence to
an existing alignment (information relating to
one node of a clock-like phylogeny)

Figure 2a depicts a rooted phylogeny for ¢ve sequences.
This is modelled on the phylogeny obtained by applying
the Jukes^Cantor model of DNA substitution, with the
assumption of a molecular clock, to the aligned 895-base
pair (bp) mtDNA sequences of Brown et al. (1982), as
studied by Bishop & Friday (1985) and Yang et al. (1995).
This tree is taken as the model, and we imagine the case
that we are interested in increasing the total information
Etot(IG) relating to the position of the node G at which
the gorilla lineage diverges. We consider two options:
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Figure 1. Transformation of variables for the case of rooted
trees. The three-species tree with branch length parameters
� � (�1, �2, �3) is clock-like when �1 is constrained to equal �2.
In this case, the positions of the internal nodes of the rooted
tree (circled 1 and 2) form the new parameters  � ( 1,  2).



increasing the lengths of each of the current ¢ve
sequences by 179 bp, or adding a sequence from an extant
species. Either choice requires the sequencing of an
additional 895 bp; we assume the c̀ost', in terms of
laboratory e¡ort, is equal for these two strategies.

Because the design options considered do not
involve variation of �, we apply equations (7) (equiva-
lently, equation (17) with constant � � 1) and
(15). The `baseline' total information relating to node G,
before any additional sequence is added, is
895� 80:89 � 7:240� 104. If the sequences were each
increased by 179 bp to 1074 bp, this would become
1074� 80:89 � 8:687� 104. This is the value that must
be exceeded by the addition of a new 895-bp sequence if
this latter strategy is to be more bene¢cial in increasing
the information about the node G at a ¢xed cost.

If an additional sequence is to be added to the phylo-
geny of ¢gure 2a, it will either be on one of the branches
labelled 1^7 or (case 8) be an outgroup to all ¢ve
sequences already present. By symmetry, it is clear that
the two branches sharing the label 2 are equivalent in this
respect and need not be considered individually. The
cases 1^8 may be placed on a linear scale d that measures
the distance between node G and the position at which
the new sequence joins the model tree. The value of d is
de¢ned to be negative for cases 1^3 (joining `below' G)
and positive for cases 4^8 (joining àbove' G). For an
outgroup sequence, case 8, it is appropriate to measure
the distance from G to the new root of the tree. Thus, in
this example d can take values between ÿ0:0592 (at the
descendent ends of branches 2 and 3) and �1 (case 8,
for an exceedingly ancient outgroup). Where ambiguity is
possible, d is given a subscript indicating the branch to
which it refers. Three possible positions for a new
sequence (cases 2, 4 and 8), and indications of their
corresponding values of d (d2, d4 and d8) are shown in
¢gure 2b.

Calculations of Etot(IG) were made for ÿ0:05924d
40:1. These are indicated in ¢gure 2c. Also indicated in
this ¢gure are the baseline values attained with no extra
sequence, and by simply increasing the length of each of
the original ¢ve sequences by 179 bp. As would be
expected, if a sequence is added that is a duplicate of one
of the original ¢ve (d � ÿ0:0592; also d5 � 0:1434 and
d7 � 0:1672, results not shown) then there is no increase
in information. The nearer to G that the additional
sequence joins the tree, the greater is the gain in infor-
mation, rising to a maximum if the new sequence joins
the model tree exactly at G (d � 0).
In particular, notice that the baseline value available

by increasing the length of the original sequences is
exceeded for ÿ0:0115 < d140, for ÿ0:0330 < d340, and
for 04d < 0:0263. These three regions (indicated by the
grey-shaded areas on the tree of ¢gure 2b) contain those
points within the model tree such that an additional
(contemporary) 895-bp sequence joining there would
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Figure 2. Adding sequence to an existing alignment.
(a) The model phylogeny, indicating the node of particular
interest (circled G) as described in the text and with branches
labelled 1^7. (The two branches labelled 2 are equivalent in
this example.) (b) The same phylogeny with three examples
of possible additional sequences (greyed branches and labels).
These are cases 2, 4 and 8 as described in the text. Corre-
sponding permitted values of d2, d4 and d8 are also indicated.
A new sequence joining the model tree within the greyed area
around node G increases the information regarding that node
more than increasing the lengths of the original sequences by
an equivalent amount would. (c) The information measure
Etot(IG) plotted against d, the distance between the node G
and the point at which a new sequence attaches to the model
tree. Regions of the graph are labelled 1^7 according to which
branch of the model tree the new sequence is attached to, or 8

(Continued) if the new sequence is an outgroup. Also indicated
is the information content of the original sequences of 895 bp
(lower grey line) and the information if these sequences are
each increased to 1074 bp (upper grey line). A logarithmic
scale is used for Etot(IG) to improve clarity.



give more additional information about node G than
would augmentation of the original sequences by a total
of 895 bp. In this particular example, because these
regions indicate either a species placed phylogenetically
between the orang-utan and the divergence of human
and chimp, or one that is a sister group to gorilla (but not
too closely related, as for example a second gorilla
sequence would be), it seems unlikely that such a
specimen could be found and laboratory resources would
be better used extending the original ¢ve sequences. For
example, note that any additional outgroup sequence
(case 8, d850:0541) adds virtually no information about
node G.

(b) Best experimental design in choice of ideal gene
for sequencing (information relating to all branch
lengths of an unrooted phylogeny)

Figure 3a depicts an unrooted phylogeny modelled on
that obtained by analysing 6166 bp  �-pseudogene
sequences of human, chimp, gorilla, orang-utan, rhesus
monkey and spider monkey (Fitch et al. 1988; Yang et al.
1995) using the Jukes^Cantor model of DNA substitution.
In this example, we consider the question of what gene,
or more speci¢cally what nucleotide substitution rate (�)
for a gene, might give more information per site
regarding the branch lengths (ti) of this model phylogeny.
This is done by scaling the entire tree (i.e. all branch
lengths) by some factor �, to represent a gene with
evolutionary rate � times that of the  �-pseudogene.
Scaling the tree by varying factors allows us to investigate
the amount of information per site relating to all branch
lengths, jE(I)j, as a function of the rate of substitution
relative to that of the  �-pseudogene sequence.

In this case, we apply equation (16). In practice, it is
convenient to look at jE(I)j1=9, which can be interpreted
as a measure of the average amount of information per
branch-length parameter for this nine-branch tree. Values
of jE(I)j1=9 for � in the range 0.1^100 are plotted in
¢gure 3b. We ¢nd that jE(I)j has a maximum at
� � 10:6. In this example, therefore, the `ideal' gene for
phylogenetic study (as indicated by the jE(I)j information
measure) would be one with rate � � 10:6 times that of
the  �-pseudogene.

Of course, it will not always be possible to select a gene
with precisely the required rate of evolution. Graphs such
as ¢gure 3b can then be of assistance in selecting the best
available gene. In this example, it is interesting to note
that genes evolving at a much greater rate would still
contain relatively large amounts of information (e.g.
� � 37 gives approximately the same jE(I)j as does
� � 1). Any gene with 1 < � < 37 (relative to the  �-
pseudogene) would be more informative than the  �-
pseudogene.

4. DISCUSSION

The ¢rst example in ½ 3(a) considers an experimental
design question regarding the addition of sequence data.
Figure 2c indicates a number of interesting features of this
type of problem. The fact that the information relating to
a parameter does not fall below the baseline level when-
ever sequence is added indicates that additional data,
however remotely related to the parameter of interest,

will never make inferences about that parameter worse.
This appears to refute the recommendation (Kim 1996)
that data might be excluded to improve phylogenetic
estimates; this recommendation perhaps resulted from
placing undue emphasis on estimating phylogenies
entirely correctly (Yang & Goldman 1997; Hillis 1998). It
is perhaps intuitively obvious that additional sequences
should ideally join the model phylogeny as near to the
node of interest as possible. It might not be so obvious,
without the quanti¢cation of information that these new
methods permit, as to quite how close to node G a new
sequence must join in order to provide more information
than simply lengthening the original sequences by a
corresponding amount would. In particular, the option of
adding any outgroup sequence is evidently of very little
use in this example.
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Figure 3. Choice of ideal gene for sequencing. (a) The model
phylogeny. Branches referred to in the text as h and sm+rm
are indicated. (b) Information plotted against �, the rate of
nucleotide substitution relative to that of the model phylo-
geny. The middle curve is the expected information jE(I)j1=9.
The upper and lower curves (grey) show E(Ih) and E(Ism�rm),
the information relating to branches h and sm+rm, respec-
tively. A logarithmic scale is used for � to improve clarity.



The second example, ½ 3(b), illustrates another realistic
question in phylogenetics. Graphs such as ¢gure 3b have
the expected shape of low information at the highest and
lowest levels of sequence divergence and a maximum at
some intermediate level, and may be useful in the design
of phylogenetic studies. Figure 3b also shows the expected
information relating to the branches leading to human
(h) and separating the spider and rhesus monkeys from
the other species (sm+rm), E(Ih) and E(Ism�rm), respec-
tively. These curves have their maxima at E(Ih) � 40:8
and E(Ism�rm) � 6:45, according with intuition and
common experience that recent events (branch h) are
best studied via relatively fast-evolving sequences and
more ancient events (branch sm+rm) via more slowly
evolving sequences. Note that results of this sort are not
available using the approach of Graybeal (1998) andYang
(1998).

One aspect of phylogenetic inference that these new
methods do not take into consideration is sequence align-
ment. It has recently been noted that alignment proce-
dures can have signi¢cant e¡ects on inferred phylogenies
(Morrison & Ellis 1997; Goldman 1998). Experimental
design studies might suggest, for example, the use of
genes with levels of divergence su¤ciently high that it
would be di¤cult to align the sequences correctly. In this
case the information measures described in this paper
might overestimate the usefulness of the supposedly
optimal sequences. Further work is needed to assess this
possibility.

The assumptions I have used regarding `laboratory
costs' of obtaining sequence data are deliberately simple,
for illustrative purposes (see also Pluzhnikov & Donnelly
1996). However, the method for assessing information
content that I have developed here is £exible enough to
allow more realism, and its probabilistic basis could allow
even complex cost functions and decision-theoretic issues
(Lindley 1985) to be taken into consideration.

I am grateful to Tim Massingham for writing computer
programs implementing the methods described in this paper
and for the original derivation of equation (13), while
supported during the summer of 1997 by a Nu¤eld Foundation
Undergraduate Research Bursary. A. W. F. Edwards provided
enlightenment on Fisher information. Edward Holmes kindly
provided assistance with, and Adrian Friday and Ziheng Yang
made useful comments on, earlier versions of the paper.
Z. Yang pointed out errors in the application of the method to
the second example, and Matthew Stephens inspired their
correction. N.G. is supported by aWellcome Trust Fellowship in
Biodiversity Research. Computer software (written in C)
performing the analyses described in this paper is available on
request.
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