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Discrete time Markov chain

There are your favorite bars, S = {A, C, G, T}, in Lexington. You and
your friends, Arne, Connie, Dave, decide to go to bar hopping one night.
Since you are already drunk, you and your friends decide where you and
your friends are going next by rollong a four faced die (tetrahedron).

Each of you and your friends has a four faced die. You will roll your die if
you and your friends are currently at Bar A, Arne rolls his die if you and
your friends are currently at Bar C, Connie rolls her die if you and your
friends are currently at Bar G, and Dave rolls his die if you and your friends
are currently at Bar T.

Each die has different weights on each face.
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Some example...

The probability of obtaining each letter differs depending on which die you
are rolling:

A C G T
Your die PAA PAC PAG PAT

Arne’s die PCA PCC PCG PCT

Connie’s die PGA PGC PGG PGT

Dave’s die PTA PTC PTG PTT

Where Pxy for any x, y in S, PAA+PAC +PAG+PAT = 1, PCA+PCC +
PCG+PCT = 1, PGA+PGC +PGG+PGT = 1, and PTA+PTC +PTG+
PTT = 1.
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Some example...

Here is a specific example:

A C G T
Your die 1/4 1/4 1/4 1/4
Arne’s die 1/5 1/5 2/5 1/5
Connie’s die 1/3 1/3 1/6 1/6
Dave’s die T 1/6 1/3 1/3 1/6

We can describe this process by drawing a picture...
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Some example...

This is an example of Discrete Time Markov process.
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Some definitions on MC

Definition A discrete time stochastic process is a collection of random
variables {X0, X1, X2, . . .} defined on a common sample space and state
space S which depends on time n = 0, 1, 2, · · · .

Definition A discrete time Markov process is a discrete time stochastic
process {Xn}

∞

n=0 which satisfies the Markov property, that is, for all
n ∈ {0, 1, . . .} and any states x0, x1, · · ·xn, y ∈ S,

P (Xn+1 = y|X0 = x0, X1 = x1, . . . , Xn = xn) = P (Xn+1 = y|Xn = xn).

Definition A time homogeneous Markov process {Xn}
∞

n=0 is a stochastic
process such that for all n ∈ {0, 1, . . .} and any states x, y ∈ S,

P (Xn+1 = y|Xn = x) = P (X1 = y|X0 = x).

Phy meeting 6



Ruriko Yoshida

Finite State MC

Definition Given a Markov chain with finite state space S, a transition
matrix is a matrix whose entry in the ith row and jth column is

P (Xt+1 = j|Xt = i).

Definition Given a Markov chain with finite state space S, the transition
graph has vertex set S, and has directed edges (i, j) with weight

P (Xt+1 = j|Xt = i)

whenever this weight is positive.

Definition We call a Markov process Markov chain if we can describe the
process as the transition graph.
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Go back to our example...

Since the probability where you are going next depends only on the place
where you are currently at, this process satisfies Markov property.

Since the probability where you are going next is not affected by the time
this process is time homogeneous.

The transition martix of our Markov chain is:

A C G T
Your die 1/4 1/4 1/4 1/4
Arne’s die 1/5 1/5 2/5 1/5
Connie’s die 1/3 1/3 1/6 1/6
Dave’s die T 1/6 1/3 1/3 1/6
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Some example...
The transition graph is:

This is an example of Discrete Time Markov chain.
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Question

Question You and your friends decide the initial bar by rolling a fair die
(X0). Then You and your friends move twice (n = 2). What is the
probability that you and your friends have been at Bar C at n = 0, at Bar
T at n = 1, and at Bar A at n = 2?

Review Suppose A1, A2 are events such that P (A2) 6= 0. Then the
conditional probability of event A1 given A2 is:

P (A1|A2) =
P (A1A2)

P (A2)
.

Thus we have
P (A1|A2)P (A2) = P (A1A2).
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Computing probability
By this way we can compute the probability of a path, x0x1x2 · · ·xnxn+1,
in a graph by:

P (Xn+1 = xn+1, Xn = xn, · · · , X1 = x1, X0 = x0)
= P (Xn+1 = xn+1|Xn = xn, · · · , X1 = x1, X0 = x0)

×P (Xn = xn|Xn−1 = xn−1, · · · , X1 = x1, X0 = x0)
× · · · × P (X1 = x1|X0 = x0)× P (X0).

Note that this is a discrete time Markov chain so it satisfies Markov property,
thus we have:

P (Xn+1 = xn+1, Xn = xn, · · · , X1 = x1, X0 = x0)
= P (Xn+1 = xn+1|Xn = xn)× P (Xn = xn|Xn−1 = xn−1)

× · · · × P (X1 = x1|X0 = x0)× P (X0).
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Go back to the example...

We want to compute the probability that you and your friends have been
at Bar C at n = 0, at Bar T at n = 1, and at Bar A at n = 2. So we want
to compute

P (X2 = A,X1 = T,X0 = C).

By using conditional probability and Markov property we have

P (X2 = A,X1 = T,X0 = C)
= P (X2 = A|X1 = T )P (X1 = T |X0 = C)P (X0 = C)
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Now use the transition martix of our Markov chain:

A C G T
Your die A 1/4 1/4 1/4 1/4
Arne’s die C 1/5 1/5 2/5 1/5
Connie’s die G 1/3 1/3 1/6 1/6
Dave’s die T 1/6 1/3 1/3 1/6

Then we have:

P (X2 = A,X1 = T,X0 = C)
= P (X2 = A|X1 = T )P (X1 = T |X0 = C)P (X0 = C)
= PTA × PCT × P (X0)
= 1/6× 1/5× 1/4
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How about...

Question You and your friends decide the initial bar by rolling a fair die
(X0). Then You and your friends move five times (n = 5). What is the
probability that you and your friends have been at Bar A at n = 5?

Fact P (Xn = y|X0 = x) for states x, y is the (x, y)th element of the
matrix Pn where P is the transition matrix.

P 5 is:
0.24352 0.27621 0.28410 0.19617
0.24346 0.27611 0.28421 0.19621
0.24357 0.27630 0.28400 0.19613
0.24352 0.27622 0.28410 0.19616
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Thus the answer is

P (X5 = A)
=

∑

x∈S P (X5 = A|X0 = x)P (X0 = x)
= 0.24352 ∗ 1/4 + 0.24346 ∗ 1/4 + 0.24357 ∗ 1/4 + 0.24352 ∗ 1/4
= 0.24352
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Definition π is a stationary or invariant distribution for a Markov chain if
Xt ∼ π implies that Xt+1 ∼ π (i.e.

∑

y∈S πyp(y, x) = πx).

Definition For countable state Markov chains, if

∑

x∈S

πxP (Xt+1 = y|Xt = x) = πy

then π is a stationary distribution. These are called the balance equations.

Definition π is a limiting distribution for a countable state Markov chain if

lim
t→∞

P (Xt = i|X0 = j) = πi,

for all states i and j.
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Note. The limiting distribution is a stationary distribution but not always
true that a stationary distribution is the limiting distribution.

I will show a proof for a fact that the limiting distribution is a stationary
distribution.

Example. S = {1, 2, 3}. If the transition matrix P = I3, then any
distribution is stationary but it does not have to be the limiting distribution.
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Evolutionary Model
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Pairwise sequences

Suppose we have a pair of sequences at a single site such that:
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Assuming time reversibility.... (let t = t1 + t2)
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0 t

X0 =A Xt =G
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Continuous time Markov chain (CTMC)
Suppose Xt, t > 0 is a stochastic process, Markov property states:

P [Xt+h = y|Xs = xs, s ≤ t] = P [Xt+h = y|Xt = xt], ∀h > 0.

A stochastic process with the Markov property is usually called a Markov
process. Markov processes are called (time-) homogeneous if

P [Xt+h = y|Xt = xt] = P [Xh = y|X0 = x0], ∀t, h > 0.

A Markov process is called time continuous if

P [Xt+h = j|Xt = i] = qijh+ o(h)

where qij is the rate of the transition probability and o(h) is some constant
in h such that o(h) → 0 as h → 0.
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DTMC to CTMC

How can we obtain the transition probability for a CTMC?

We discrete the time interval [0, T ] into n pieces and send n → ∞.

If we do then we have h = T/n.

From the definition above we have

P [Xt+h = j|Xt = i] = qijh+ o(h)
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Example: Poisson process

A Poisson process is a process {Xt} satisfying:

• X0 = 0.

• The number of events during one time interval does not affect the
number of events during a different time interval.

• The average rate at which events occur remains constant.

• Events occur once at a time.
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Example: Poisson process

From the definition we have the state space Σ = Z+ = {0, 1, 2, · · · }.

Let x ∈ Σ and λ > 0. With the time interval (t, t + h) the probability to
change from x to x + 1 is λh + o(h) and the probability to stay at x is
1− λh+ o(h).

We discretize the time interval [0, t] into n pieces. Then we use Binomial
distribution:

P (Xt = x|X0 = 0) =

(

n

x

)

(λ
t

n
)x(1− λ

t

n
)n−x.

If we send n → ∞ then we get the distribution:

P (Xt = x|X0 = 0) =
(λt)xe−λt

x!
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CTMC with a finite state space

How about a CTMC with a finite state space?

The idea to obtain the transition probability is the same. As soon as we
have the rates for transitions we can compute the transition probability.

Definition: A rate matrix (or infinitesimal matrix) is a square matrix
Q = (qij), with rows and columns indexed by the state space Σ.

Rate matrices must satisfy the following requirements:

qij ≥ 0 for i 6= j,

∑

j∈Σ

qij = 0 for all i ∈ Σ,

qii < 0 for all i ∈ Σ.
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Example

Consider the state space Σ = {A, C, G, T}.

The Jukes-Cantor matrix is the matrix

Q =









−3α α α α
α −3α α α
α α −3α α
α α α −3α









,

where α ≥ 0 is a parameter.
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Transition probability

If we have a finite state space we can compute the transition probability
matrix by

P (t) = eQt

Example: For J-C model we have

P (t) =
1

4









1 + 3e−4αt 1− e−4αt 1− e−4αt 1− e−4αt

1− e−4αt 1 + 3e−4αt 1− e−4αt 1− e−4αt

1− e−4αt 1− e−4αt 1 + 3e−4αt 1− e−4αt

1− e−4αt 1− e−4αt 1− e−4αt 1 + 3e−4αt









.

Note that if we send t → ∞ then we get the limiting distribution π. Under
the JC model we have π = (1/4, 1/4, 1/4, 1/4).
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Example

Suppose we have a pair of sequences at a single site under the JC model:
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Assuming time reversibility.... (let t = t1 + t2)
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X0 =A Xt =G
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Example
We estimate the initial distribution by the limiting distribution (because
this is time reversible). Let PAG be the probability to observe X0 = A and
Xt = G.

PAG

= P (X0 = A, Xt = G)
= P (X0 = A)P (Xt = G|X0 = A)
= 1

4
× 1

4

(

1− e−4αt
)

By this way we can compute the probability Pab where for any pairs
a, b ∈ Σ = {A,C,G, T}, namely:

Pab =
1

4
× 1

4

(

1− e−4αt
)

if a 6= b
Pab =

1

4
× 1

4

(

1 + 3e−4αt
)

if a = b
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Example: Triples

How about we have the number of leaves n = 3?

To make it simple we consider the two state model: Σ = {0, 1}.
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Figure 1: Tree with three leaves.
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Example: Triples

Consider the JC model on Σ = {0, 1}. Then we have the rate matrix:

(

−α α
α −α

)

Then we have the transition probability matrix:

(

1− p(t) p(t)
p(t) 1− p(t)

)

where p(t) =
1

2
(1− e−4αt).
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There is two cases
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Figure 2: The interior node with a state 0.
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There is two cases
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Figure 3: The interior node with a state 1.
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Triples

The probability of this will be given by:

P (Xt1 = 0, Xt2 = 0, Xt3 = 1)
= P ({Xt1 = 0, Xt2 = 0, Xt3 = 1} ∩ {X0 = 0})

+P ({Xt1 = 0, Xt2 = 0, Xt3 = 1} ∩ {X0 = 1})
= P (Figure2) + P (Figure3)
= P (Xt1 = 0, Xt2 = 0, Xt3 = 1|X0 = 0)P (X0 = 0)

+P (Xt1 = 0, Xt2 = 0, Xt3 = 1|X0 = 1)P (X0 = 1)
= P (Xt1|X0 = 0)P (Xt2|X0 = 0)P (Xt3|X0 = 0)P (X0 = 0)

+P (Xt1|X0 = 1)P (Xt2|X0 = 1)P (Xt3|X0 = 1)P (X0 = 1).

Under this model, since this is time reversable, we use the stationary
distribution (1/2, 1/2) for P (X0 = 0) and P (X0 = 1), Thus, P (X0 = 0) =
P (X0 = 1) = 1/2.
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Generalizing to multiple sites....

Suppose we have multiple site and assume that each site is independently
mutated.

Example:
X1 = GATTACA
X2 = GCCATAC

Since each site mutated independently we have

P (X1, X2)
= PGGPACPTCPTAPATPCAPAC

= P 1
GGP

2
ACP

1
TCP

1
TAP

1
ATP

1
CA

Thus all we have to do is to count frequencies of pairs (a, b) where a, b ∈ Σ
to compute the probability.
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The GTR model

Consider the general time reversible (GTR) model.

Let πa, a ∈ Σ,
∑

a πa = 1, be the stationary distribution of the Markov
chain.

The GTR model has substitution rate matrix:

Qθ =









· θAGπG θACπC θATπT

θAGπA · θGCπC θGTπT

θACπA θGCπG · θCTπT

θATπA θGTπG θCTπC ·









where the diagonal elements are such that each row sums to zero.

The 6 unknown parameters are θ = (θAG, θAC, θAT , θGC, θGT , θCT ).
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JC69

K80

F81

HKY85









· απC απG απT

απA · απG απT

απA απC · απT

απA απC απG ·















· α α α

α · α α

α α · α

α α α ·















· βπC απG βπT

βπA · βπG απT

απA βπC · βπT

βπA απC βπG ·









F84

REV

K81

SYM







· βπC (β + α

πR

)πG βπT

βπA · βπG (β + α

πY

)πT

(β + α

πR

)πA βπC · βπT

βπA (β + α

πY

)πC βπG ·













· βπC απC βπA

βπA · βπC απA

απA βπC · βπA

βπA απC βπC ·







CS05







· β α β

β · β α

α β · β

β α β ·







TN93







· α β γ

α · δ ǫ

β δ · φ

γ ǫ φ ·













· β α γ

β · γ α

α γ · β

γ α β ·













· απC βπG γπT

απA · δπG ǫπT

βπA δπC · φπT

γπA ǫπC φπG ·













· βπC απG βπT

βπA · βπG γπT

απA βπC · βπT

βπA γπC βπG ·







Figure 4: The Felsenstein hierarchy of evolutionary models
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